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Abstract. An ongoing climate change poses increasing challenges to the public interest. At the same time, digital 
transformation fosters the development and application of a multitude of different machine learning (ML) models.  This 
work contains a scientific review of recent applications of ML models in the estimation and modelling of greenhouse 
gas emissions. We provide an overview of the main challenges and the performances of implemented methods and 
possibilities for future directions. 
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Introduction 

Anthropogenic influence in global warming cannot be underestimated. Increasing greenhouse gas 
(GHG) emissions caused by humans are a major force of global warming. These emissions are caused by a 
wide range of human activities from heavy industry to agriculture and daily routine activity. According to 
IPCC reports significant anthropogenic GHGs are CO2, N2O, CH4 and CFCs. Agricultural GHGs emission 
has a major role in several countries without developed heavy industry (or with regularised heavy industry) 
in example Canada and Brazil [1, 2]. Agricultural soils both are a source and a sink for GHGs, however, 
small changes in the soil respiration process may cause significant changes in GHGs emission balance from 
sink to emission. According to the IPCC report, 60% of total N2O and 50% of total CH4 emissions come 
from agriculture. And emission of agriculture GHGs increasing year by year and emissions may escalate due 
to global population growth. CO2 emits from microbiological decay or burning plants, and CH4 is produced 
from organic decomposition and oxygen-deprived fermentation. N2O produces from microbiological trans-
formation, especially in wet conditions with high humidity or large precipitations with a predicted increase 
from 30% to 2030s. Modelling and researching of GHGs agriculture emissions is reasonably justified.  

For this purpose, in Chechen republic in 2021 year was constructed system of carbon polygons. 
These polygons are located in former agriculture fields, former oil-development polygons, natural forests and 
former anthropogenic landscapes. Measurements on polygons presented by GHGs in-situ chambers 
measurements, flux towers and regular meteorological observations may be used in GHGs modelling. Also, 
NDVI and EVI indexes calculated with remote sensing are useful data for describing conditions on 
agricultural fields and should be used in modelling. Various biophysical models for GHGs cycle simulation 
have been developed, such as DNDC, DAYCENT, DSSAT. These models have proven their effectiveness, 
but are very sensitive to data conditions and physical parametrizations which are not always can be well 
identified and also required qualified users to operate with them. Machine learning (ML) algorithms are good 
for overcoming classic model problems. Machine learning algorithms are rapidly developing lately, with the 
increasing of their generalizing ability. A wide range of ML algorithms has been developed based on dif-
ferent ML techniques with special advantages and disadvantages of specific methods. This article presents 
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the results of some of the research works for ML modelling of GHGs. This experience is very useful for 
future modelling based on carbon polygons data. 

This review focuses on the applications of machine learning methods on a local scale of the 
researched site. Some of the related studies centre around the prediction of global GHG emissions based on 
socioeconomic and geographical factors, which is outside of the scope of the paper. To our knowledge, there 
have not yet been systematic reviews of recent works in estimating GHG emissions with machine learning 
models. Toby et. al. [3] provided a comparison of the application of 4 families of machine learning in the 
estimation of CO2 fluxes in cropping fields. 

Research Methodology 

In our analysis, we highlight the following aspects of the application. Firstly, we investigate the 
context, scale, and purpose of the researched site. Naturally, the investigated site defines the mechanism, the 
scale, and the nature of emitted greenhouse gases. This includes cropping and various agriculture. The 
context is crucial in describing the problem and the domain knowledge largely defines the structure of the 
model. Lastly, we study the models applied in the research, as well as the nature and the scale of the 
measurements used in the modelling, and the machine learning method.  

Estimation of GHG Emissions 

Tackling the problem of predicting greenhouse emissions from agricultural soils, Hamrani et. al. 
analysed a pool of several ML algorithms from classical regression models to deep learning neural networks. 
The models predicted CO2 and N2O emission based on measurements from agricultural fields in Quebec, 
Canada: air and soil temperature, soil volumetric water content, air humidity, precipitation, atmospheric 
pressure and crop N uptake as predictors; CO2 and N2O emission measured with chambers as predictands. 
Data was measured in 3 different plots size 75x15 meters during 6 years from 2012 to 2017 with crop 
rotation (corn, soybeans, oat). CO2 data is cyclically emitted throughout every year, N2O is seasonally 
emitted with sharp peaks. The authors identified the feature importance of each gas. Feature importance has 
been evaluated with neighbourhood component analysis (NCA) and minimum redundancy maximum 
relevance (MRMR) analysis. For CO2 most important features are air and soil temperatures, soil volumetric 
water content and humidity, for N2O soil water volumetric content and precipitation are the most important 
which corresponds with other authors [4, 5]. Models to choose from, presented by classic regression models: 
SCM, LASSO, Random Forest; shallow learning: FNN, RBFNN; deep learning: LSTM, CNN, DVN. The 
minimized quality metric is RMSE, also quality is evaluated with R2. With selected models, the authors 
concluded that the LSTM model has the best performance for CO2 and N2O prediction with best score R2 = 
0.87, RMSE 30.3 mg m-2h-1. 

On the example of a contrasting environment, Freitas et. al.  accent on CO2 emissions over green cane 
fields in Brazil. Data was collected from three different fields after the harvest period with Li-Core 8100 flux 
gas analyzer system (2008, 2010 and 2012) year. The authors employed a multilayer perceptron (MLP) with 
three layers to estimate FCO2 emission. Training data soil samples were collected from 0 to 0.10 m in depth. 
The following routine tests were carried out: determining the content of organic matter (OM), the available P, 
K, Ca, Mg, and H + Al, and establishing the calculation of the sum of the bases and the exchange cation 
capacity. Custom feature engineering may help evaluate FCO2 with higher accuracy with lack of train data. 
The authors with their custom features reached good quality with mean absolute percentage error (MAPE) 
18.4% and R2 = 0.92 for predicting 2012 years on 2008 and 2010 train data. The authors did not check the 
stability of the model with known validation methods, however, their model well agreed with FCO2 emission 
peaks in 2012 year, which may conclude custom feature engineering was performed thoroughly. 

As a comparison, the work by Oertel et. al. introduces a random forest regression model in order to 
estimate N2O emissions on the dataset collected from a set of experiments. The dataset contributed by Steh-
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fest, E. et. al. [6] includes results of experiments from over 114 publications focused on the prediction of nit-
rous oxide emissions on various cropping fields. As a result of pre-processing, they extracted 19 input va-
riables, categorized into soil contents, crop type, geographical, and fertilizing agent features. The authors 
show that RF systematically outperforms the regression model evaluated on the same data. The accuracy was 
calculated based on rooted mean squared error (RMSE) in kg N ha-1 year-1. Additionally, the work shows the 
importance of fertilizer and crop type as identified by RF ranking of input variables. As the authors stated, 
the explainability of the method is limited due to the impossibility of explicitly including external factors, 
such as soil tillage and regional effects. However, they cause an indirect influence on some of the included 
variables. 

Machine Learning models 

Decision Trees and Random Forests 

Decision trees are a family of tree-like algorithms that are based on binary decision rules. They have 
been particularly useful in various applications due to their explainability and robustness to missing data [5]. 
XGBoost and Random Forest extend the family by ensembling the prediction of individual trees and thus 
achieving higher robustness and generalisation. 

Deep Neural Networks (DNNs) 

Ongoing digitalization and advances in computation opened the way to deep learning models. These 
models usually are equipped with multiple layers of various neural networks, such as ANNs, convolutional 
operators, and recursive architectures. Convolutional neural networks (CNNs) are a standard in image 
processing applications. Analogously, they are widely used in hyper- and multi-spectral analysis, which was 
found particular use in the estimation of GHG emissions and carbon stock. One of the biggest drawbacks of 
neural networks is the “black box” nature, which hinders their explainability. Furthermore, these models 
usually require considerable amounts of data. This may be unattainable in many manual and in-situ 
measurements. 

GHG measuring technologies 

Machine learning models are heavily reliant on the availability and quality of data. We highlight two 
main measuring methods 

In-situ measurements 

GHGs measures with flux methodology. Standard instruments are: chambers and optical gas 
analyzers. Chambers are especially useful and simple to construct and operate, also chambers are able to 
measure very low rates of fluxes in a short period of time. Unfortunately, close chambers have their 
disadvantages such as increasing gas concentration in the chamber may cause measurement errors. Chambers 
may cause their own greenhouse effect with recurrent problems. Optical gas analyzers are able to measure 
fluxes and concentrations of GHGs with more than sufficient quality, however, these analyzers are very 
expensive and affected by a territory's footprint.  

Remote sensing 

Concentration of gases and atmospheric composition can be measured with a network of land or 
aerial stations. These monitors are usually equipped with hyper- or multi-spectral imaging instruments and 
spectrometers and are practical for modeling CO2 emissions via vegetation indices [7, 8]. For applications 
such as carbon stock inventory estimation, aerial imagery data provides a less costly and more standardised 
alternative source to manual labour. Furthermore, openly available measurements stimulate the development 
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of machine learning models. Although remote sensing with lidar measurements may evaluate a large ter-
ritory’s emission for a short time, however, it requires very careful preparation of the orthophotomap of the 
territory. Remote sensing doesn’t have in-situ measurement quality. The scale of the errors of aerial imagery 
is radically higher than permissible deviations of in-situ measurements. 

Conclusion 

Availability of computing resources and ongoing digitalization of data fostered the development and 
adoption of ML methods. Although remote sensing and automated in-situ measurements of GHG emissions 
add up to the available data, manually labelled data is especially limited. This reinforces the drawbacks of 
some ML methods. One of the potential solutions to that is introducing inductive biases in the models or 
using advanced learning methods, such as semi- and self-supervised learning. 

Additionally, we note that geographical and geoecological conditions impede the comparison of the 
performance of the models applied. At the same time, there is a positive outcome from compiling and sha-
ring measurement results from different sources.  

This work was carried out as a part of a scientific project: 

Grozny State Oil Technical University FZNU-2021-0012 

“Complex interpretation of geophysical and geoecological data in studies of greenhouse gas balance 
(on the example of Chechen Republic)”. 
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