Мелконян Д.О.

Государственная служба Армении по гидрометеорологии и мониторингу УДК551.521.3+51.001.57

О КЛИМАТИЧЕСКОМ РЕЖИМЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ТЕРРИТОРИИ АРМЕНИИ

ВВЕДЕНИЕ

Климат является одним из основных важных факторов, определяющих состояние окружающей среды. Поэтому наблюдаемые в настоящее время его явные изменения привлекают к себе столь острый интерес как среди широкой общественности, так в научной среде.

Понятие климата некоторого района определяется как "синтез погодных условий данного района, характеризуемый долгосрочными статистическими данными (средние значения, дисперсии, вероятности экстремальных значений и т. д.) метеорологических элементов (явлений) в этом районе" [4].

Одним из основных факторов, определяющих погодные условия района, является радиационный режим его подстилающей поверхности. Поэтому для оценки современного климата и изучения трендов климатических изменений в Армении в рамках финансированной из госбюджета НИР "Исследование радиационных ресурсов территории Армении" (2005-2007гг.) автором были предприняты создание базы данных и справочника радиационных ресурсов территории Армении, а также компьютерной модели, обобщающей полученные результаты для их широкого применения на практике.

МЕТОДИКА

Сбор, систематизация и обработка 25-летних рядов актинометрических наблюдений, выполненных на сети метеостанций страны в течение 1980-2004гг., позволили произвести исследование долгосрочных данных по распределению потоков прямой, рассеянной, отраженной солнечной радиации и радиационного баланса системы земля-атмосфера, продолжительности солнечного сияния и режима облачности над территорией страны. Рассчитаны режимы сезонных вариаций коротковолнового баланса и суммарной радиации, а также приведенного к двум атмосферным массам интегрального коэффициента Р₂ прозрачности атмосферы и альбедо подстилающей поверхности.

По результатам выполненных в течение 1990-2004гг. регулярных наблюдений общего содержания озона над территорией Армении, сезонного хода прозрачности атмосферы и на основании приближенного равенства коэффициента P_2 монохроматическому коэффициенту прозрачности $P_{0,55}$ для длины волны 0,55 микрон получена оценка сезонного хода значений коэффициента мутности Ангстрема для аэрозольного слоя атмосферы.

Произведено также математическое моделирование результатов исследования и экстраполяция их на территорию всей страны.

Для этого на основании данных о распределении интенсивности солнечной радиации во внеатмосферном спектре и стандартных значениях коэффициентов молекулярного рассеяния радиации в атмосфере в интервале длин волн (0,27–100) микрон [3], по стандартным значениям коэффициентов поглощения ее в озоновом слое [2] и полученным значениям коэффициента поглощения радиации в аэрозольном слое атмосферы, а также с использованием электроной карты релефа поверхности Армении построена компьютерная модель переноса радиации в атмосфере, распределения и (однократного) отражения ее на поверхности — с учетом географического расположения, ориентации, углов наклона и альбедо этих поверхностей.

РЕЗУЛЬТАТЫ

На основании обобщения полученных результатов разработан макет справочника радиационных ресурсов территории Армении, соответствующий по своей структуре климатическому справочнику [5], но дополненный по каждой из метеостанций разделом статистических оценок качества полученных результатов.

Построенная модель создает возможность оценки радиационных факторов и ресурсов в любом ее регионе и расширения тем самым областей практического применения полученных результатов — например, в областях энергетики, сельского хозяйства, здравоохранения, гражданского и военного строительства, научно-прикладных исследований и т.д.

Модель позволяет определить сезонные изменения интенсивности, почасовых, дневных, месячных и годовых сумм прямой, рассеянной, отраженной, суммарной радиации и кортковолнового баланса в любой части спектра – в частности, в области ультрафиолетовой радиации УФР (в том числе УФ-А, -В и -С), видимой, инфракрасной, фотосинтетической, коротковолновой, длинноволновой), – а также пространственное распределение УФИ (индексов УФР) и времен получения 1 МЭД (минимальной эритемной дозы) УФР для 4-х основных типов кожи, для чего используется эритемный СІЕ-спектр McKinlay, Diffey [1].

Ниже представлены некоторые результаты моделирования режима УФ-облучения в регионе горы Арагац и Араратской долины (рисунки 1-4), а также зависимость сумм суммарной фотосинтетической радиации от высоты в двух областях страны: северо-восточной с относительно влажным климатом (Таблицы 1, 2) и южной с относительно засушливым климатом (Таблица 3, 4).

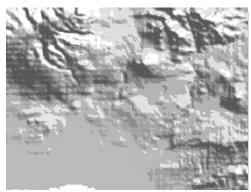


Рис.1. Карта региона; интервал высот: 829 — 4090м над уровнем моря

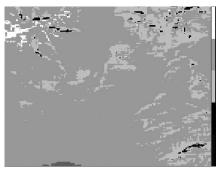


Рис.3. Распределение индексов УФР; 22-е июня; альбедо = 0,1; интервал значений: 6–11

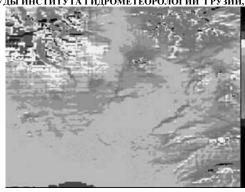


Рис.2. Дневные суммы суммарной УФР; 22-е июня; альбедо = 0,1; интервал значений: $0.88-1.78~{
m MJ/m^2}$

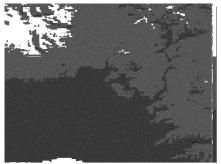


Рис.4. Распределение индексов УФР; 22-е декабря; альбедо = 0.7; интервал значений: 1-2.5.

Таблица 1. Зависимость сумм суммарной фотосинтетической радиации при обеспеченности 75% и при ясном небе для северовосточных районов Армении от высоты

	CEBEP	Географ	ическое по	ложение	СРОКИ		СУММЫ		СРОКИ		СУММЫ		СУММЫ	
	Станции	высота	широта	долгота	Переход через 10 градусов МДж/м2		ккал / см 2	Переход через 5 градусов		МДж/м2	ккап/см2	год: МДж /м2	год: ккап / см 2	
					вверх	ВНИ3			вверх	ВНИЗ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Γ	Иджеван	733	40 ⁰ 52'	45 ⁰ 09'	17/4	27/10	1803	43,1	17/3	3/12	2218	53,0	2663	63,6
	Одзун	1105	41 ⁰ 03'	44 ⁰ 38'	26/4	20/10	1697	40,5	27/3	22/11	2105	50,3	2660	63,5
	Ташир	1507	41 ⁰ 07'	44 ⁰ 17'	15.5	3/10	1401	33,5	12/4	2/11	1774	42,4	2655	63,4
	Ашоцк	2012	41 ⁰ 02'	43 ⁰ 52'	5 <i>1</i> 6	24/9	1110	26,5	27.5	12/10	1328	31,7	2647	63,2
	Арагац в / г	3227	40° 29'	44 ⁰ 11'	-	-			25/6	18/9	839	20,0	2630	62,8

Таблица 2. Зависимость сумм суммарной фотосинтетической радиации при обеспеченности 75% и при средних условиях облачности для северо-восточных районов Армении от высоты

CEBEP	Географ	ическое по	ложение	СРОКИ		СУММЫ		СРОКИ		СУММЫ		СУММЫ			
Станции	высота	широта	широта	широта	долгота	Перехо, 10 гра	д через ідусов	МДж і м2	ккал <i>І</i> см 2	Переход через 5 градусов		МДж і м2	ккап / см2	год: МДж / м	год: ккал / см 2
				вверх	вниз			вверх вниз			2				
Иджеван	733	40°52'	45 ⁰ 09'	17/4	27/10	1402	33,5	17/3	3/12	1732	41,4	2020	48,2		
Одзун	1105	41 ⁰ 03'	44 ⁰ 38'	26/4	20/10	1320	31,5	27/3	22/11	1603	38,3	2018	48,2		
Ташир	1507	41 ⁰ 07'	44 ⁰ 17'	15.5	3/10	1115	26,6	12/4	2/11	1366	32,6	2014	48,1		
Ашоцк	2012	41 ⁰ 02'	43 ⁰ 52'	5 <i>1</i> 6	24/9	910	21,7	27/5	12/10	1074	25,7	2008	48,0		
Арагац в <i>І</i> г	3227	40°29'	44 ⁰ 11'	-	-			25/6	18/9	692	16,5	1995	47,6		

Таблица 3. Зависимость сумм суммарной фотосинтетической радиации при обеспеченности 75% и при ясном небе для южных районов Армении от высоты

ЮГ	Географ	ическое по	ложение	СРОКИ		СУММЫ		СРОКИ		СУММЫ		СУММЫ	
Станции	высота	широта	долгота		од через адусов МДж /м2		ккап/см2	Переход через 5 градусов		МДж/м2	ккап / см2	год: МДж /м2	год: ккал / см 2
				вверх	ВНИЗ			вверх	х вниз			I I I I I I I I I I I I I I I I I I I	THE POINT
Арарат	818	39º 49'	44º 43'	2/4	2/11	1994	47,6	12/3	22/11	2241	53,5	2714	64,8
Аштарак	1090	39º 50'	44°59′	16/4	7/11	1896	4 5,3	25/3	26/11	2159	51,6	2709	64,7
Сисиан	1580	39º 32'	46º 01'	15.5	8/10	1444	34,5	11/4	4/11	1922	45,9	2705	64,6
Безымяный	2130	39º 50'	44 º 59'	24/5	8/10	1346	32,1	25/4	30/10	1763	42,1	2697	64,4
Воротан	2387	39º 41'	45° 43'	16/6	24/9	995	23,8	7.5	21/10	1619	38,7	2693	64,3

Таблица 4. Зависимость сумм суммарной фотосинтетической радиации при обеспеченности 75% и при средних условиях облачности для южных районов Армении от высоты

ЮГ	Географ	ическое по	ложение	СРОКИ		СУММЫ	′ММЫ		СРОКИ			СУММЫ	
Станции	высота	широта	долгота	, ,	д через идусов	в МДж/м2	ккап / см2	Перехо 5 гра	д через дусов	МДж /м2	12 ккап/см2	год: МДж / м 2	год: ккап / см 2
				вверх	ВНИЗ			вверх	вниз				
Арарат	818	39º 49'	44º 43'	2/4	2/11	1657	39,6	12/3	22/11	1829	43,7	2129	50,9
Аштарак	1090	3 9°50'	44 º 59'	16/4	7/11	1596	38,1	25/3	26/11	1772	42,3	2125	50,8
Сисиан	1580	390 324	46º 01'	15.5	8/10	1270	30,3	11/4	4/11	1610	38,5	2122	50,7
Безымяный	2130	39º 50'	44 º 59 °	24/5	8/10	1192	28,5	25/4	30/10	1508	36,0	2115	50,5
Воротан	2387	39º 41'	45º 43'	16/6	24/9	1175	28,1	7 <i>E</i> 5	21/10	1402	33,5	2114	50,5

ЗАКЛЮЧЕНИЕ

Создание базы данных и справочника радиационных ресурсов территории Армении в совокупности с [5, 6] позволяет исследовать современные изменения радиационного режима на территории Армении за период 1960-2004гг.

Построенная модель радиационного климата на территории Армении с точностью (7-10)% воспроизводит климатический режим распределения солнечной радиации по долгосрочным статистическим данным, основанным на результатах прямых актинометрических измерений. Вместе с тем, она позволяет получать климатические оценки различных радиационно-обусловленных параметров окружающей среды в любом регионе территории страны с учетом его орографии – как при ясном небе, так и при средних условиях облачности. Результаты моделирования выводятся в форме цветных и черно-белых карт либо таблиц.

Ლ0&ᲔᲠᲐ&ᲣᲠᲐ - REFERENCES – ЛИТЕРАТУРА

- 1. Гигиенические критерии окружающей среды, 1995, Ультрафиолетовое излучение, Женева, ВОЗ.
- 2. Г.П.Гущин, Н.Н.Виноградова, 1985, Суммарный озон в атмосфере, Лленинград, Гидрометеоиздат.
- 3. К.Я.Кондратьев, 1986, Радиационные факторы современных изменений глобального климата, Ленинград, Гидрометеоиздат.
- 4. Международный метеорологический словарь. WMO/OMM/BMO No.182.
- 5. Научно-прикладной справочник по климату СССР,1989, Многолетние данные, серия 3, части 1-7, выпуск 16 "Армянская ССР", Ленинград, Гидрометеоиздат.
- 6. Справочник по климату СССР, 1968, Солнечная радиация, радиационный баланс и солнечное сияние, Ленинград, Гидрометеоиздат.

UDC 551.521.3+51.001.57

О КЛИМАТИЧЕСКОМ РЕЖИМЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ТЕРРИТОРИИ АРМЕНИИ. /Melkonian D./.Transactions of the Georgian Institute of Hydrometeorology. -2008. - т.115. – р. 177-183. - Russ .; Summ. Eng.; Russ.

The purpose and result of work is the creation of a database and the directory of radiating resources of territory of Armenia, and also computer model for estimation of the radiation-caused factors in any region of territory of the country in view of its orography - both at the clear sky, and under average conditions of cloudiness. The results can be used in areas of power, an agriculture, public health services, civil and military construction, scientifically-applied researches.

УДК551.521.3+51.001.57

О КЛИМАТИЧЕСКОМ РЕЖИМЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ТЕРРИТОРИИ АРМЕНИИ. /Мелконян Д.О./. Сб.Трудов Института Гидрометеорологии Грузии. –2008. – т.115. – с. 177-183. – Рус.; Рез. Анг., Рус

Целью и результатом работы является создание базы данных и справочника радиационных ресурсов территории Армении, а также компьютерной модели для оценки радиационно-обусловленных факторов в любом регионе территории страны с учетом его орографии – как при ясном небе, так и при средних условиях облачности. Результаты могут быть использованы в областях энергетики, сельского хозяйства, здравоохранения, гражданского и военного строительства, научно-прикладных исследований.